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Abstract 
 
The production of energy crops such as Camelina sativa on contaminated land offers the possibility of a high-value 
low-cost long-term remediation strategy and a potential counterbalance to land abandonment. This shift in agrarian 
practice offers a potentially viable source of income to primary stakeholders and brings the land back into useful 
production. We report on the development of methodologies for charting the traceability of potentially toxic elements in 
camelina cultivated on contaminated land from soil to plant material and raw oil. Translocation factors for Cd and Zn 
suggest camelina has the potential to act as accumulator, offering potential phytoremediation benefits. However careful 
consideration of the use and value of the co-products is needed to determine an accurate business case scenario. 
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INTRODUCTION 
 
Land is a finite resource upon which the human 
race is entirely dependent for its well-being 
(Bridges and van Baren, 1997; Louwagie et al., 
2011). The common perception of land and soil 
as an infinitely exploitable resource is ultima-
tely unsustainable (Eswaren et al., 2001; Gobin 
et al., 2004). On a European scale, there are 
many areas where land has become degraded or 
contaminated by human activities such as poor 
farming practice, mining, industry and waste 
disposal. Whilst estimates of contaminated land 
widely vary from region to region and are 
localised in nature, a very large fraction 
(>70%) of the currently identified three million 
sites affected by chemical land degradation can 
be attributed to anthropogenic pollution with 
predominant contaminants being potentially 
toxic elements (PTE) such as Pb, Cd and Zn, 
and mineral oils (EEA, 2007; EEA, 2010). 
Contaminated land represents a particular 
problem in that it is often abandoned and left as 
unsightly wasteland that can have a detrimental 
effect on health and the social-economics of the 
area. Concerns that PTEs may detrimentally 
enter the food chain if crop production is 
undertaken and issues relating to receptors, 
end-points and overall fitness often restrict the 
usage of such land. 

Remedial treatment of these sites is often costly 
or unsustainable. However, in some cases the 
production of energy crops such as Camelina 
sativa (camelina) offers a possible high-value-
low-cost long-term remediation strategy and a 
potential counterbalance to land abandonment 
(Keenleyside and Tucker, 2010). This shift in 
agrarian practice offers an attractive alternative 
that allows the primary stakeholders a 
potentially viable source of income and brings 
the land back into useful production (Hoogwijk 
et al., 2003; Campbell et al., 2008; Gallagher, 
2008; Fargioneet et al., 2010; Cai et al., 2011); 
whilst allowing the demands of the Common 
Agricultural Policy (CAP) and key imperatives 
of the Renewal Energy Directive to be met 
(EEA 2007b; Directive 2009/28/EC). 
Nevertheless, concerns are raised that camelina 
feedstock grown on contaminated land or 
irrigated with contaminated water, may have 
trace metals present within the plant matter and 
the economic viability of the crop may be 
compromised.  
As part of EU FP7 project: Initiative Towards 
sustainable Kerosene for Aviation (ITAKA) a 
methodology for traceability of the PTEs in the 
value chain to assess impacts of cultivating 
camelina on contaminated land was developed 
using camelina crops grown on four metal 
contaminated field sites in Romania. This paper 
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presents some of the initial findings from the 
case-study site at Rovinari, Gorj County, an 
overburden-dump site from the local lignite 
mines. 
 
MATERIALS AND METHODS 
 
The current study focussed on the development 
of methodologies for the traceability of PTEs in 
camelina cultivated on contaminated land. Such 
methodologies were needed as the cultivation 
of energy crops on contaminated land is an 
innovative approach, and there are few stan-
dard methods to draw upon. The methodology 
has been devised to consider the key three 
compartments: soil, plant material and raw oil. 
Given the proposed end use of the camelina oil 
in aviation biofuel and the challenges posed in 
developing an effective methodology, the 
assessment of the methodology focussed on a 
small subset of key metals identified in Def-
Stan 91-91 and by industrial stakeholders to be 
of greatest concern with respect to thermal 
instability and turbine rotor degradation. 
In the field cultivation trials, camelina was 
cultivated at selected field sites in Romania 
(Figure 1). With all field study trials, these 
crops are subject to a much wider range of 
unregulated environmental parameters than in 
greenhouse trials, therefore rigorous and 
standardised sampling protocols should be 
adhered to in the analysis to minimise 
experimental uncertainty. 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Locations of the four Romanian  

contaminated field sites 

A comprehensive elemental analysis of the soil 
at each of the Romanian field cultivation trial 
sites was conducted, pre-cultivation and pre-
harvest as a preliminary assessment for 

camelina’s remediative potential. The soil 
characterisation methodology employed a 
random stratified sampling protocol using a 
minimum of 25 samples/ha in accordance with 
ISO 10382-1:2002 to allow for the inherent 
uncertainties in the distribution of metals in 
contaminated soils. Partial digestion of the bulk 
base compost was carried out using aqua regia 
(AnalaR quality), HCl (aq) (32.25%) and 
HNO3 (aq) (69%), (in ratio 3:1 v/v)), with 
quantities compliant with ISO 11466:1995. 
Elemental concentration of 20 elements (Al, 
As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, 
Mo, Na, Ni, P, Pb, Ti, V and Zn) of digestion 
analytes were determined using ICP-OES 
analysis. Dutch Target and Intervention Values 
for soil remediation (DTIV) (VROM, 2000, 
VROM, 2009) and the Romanian Reference 
Values (RRV) have been employed to evaluate 
the degree of contamination in the soil samples 
analysed, for the 11 target-metals As, Cd, Co, 
Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn, the presence 
of which have been highlighted to be of 
concern in bio-kerosene (Def Stan 91-91). 
Analysis of plant material was undertaken the 
11 target-metals using trace element analysis 
reagents and microwave-assisted digestion, 
with the methodology incorporating key 
elements of EN13804:2013; EN13805:2002 
and EN14084:2003. For the determination of 
trace metals in oil, a number of industry 
standard methods (including UOP 389 and 
ASTM D7771-15 / ASTM D5185-09) were 
trialled and assessed with regard to reliability 
and reproducibility, and two indirect methods 
using EDTA extraction followed by ICP-OES 
analysis, and microwave-assisted digestion and 
subsequent ICP-OES analysis. Overall, the 
indirect method of acid microwave-assisted 
digestion was considered the most reliable 
technique. 
 
Study site 
The case study site is located at Rovinari, Gorj 
County. Rovinari (44°55' 17.9''N; 23°10' 51''E) 
is a mining town in Gorj County, Oltenia, 
Romania, located on the E79 and next to the 
River Jiu; it is approximately 288 km west-
northwest of Bucharest and 24 km south-west 
of the county seat, Târgu Jiu. 
Rovinari and its environs form one the largest 
open cast lignite mines in Romania. The extrac-
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ted lignite is used to power the Complexul 
Energetic Rovinari thermo-electrical power 
plant situated close to the town. 
The field study site is surrounded by the Carrier 
Gala lignite quarry located to east the town of 
Rovinari. The Sterile site is an area where the 
overburden material of the lignite quarry has 
been deposited. The soil matrix is composed of 
yellow-brown (2.5Y68) clays with pebble-
cobble sized rock fragments and lignite 
fragments. The total carbon and total nitrogen 
range of the soil is determined to be between 
2.6-8.9% and 0.10-0.35%, respectively, with a 
C:N ratio of 21-33. The soil displays a degree 
of alkalinity, pH 8.2-8.4, similar to pH values 
have reported for other sterile dumps within the 
locality (Cărăbis et al., 2011). The soil had 
been previously conditioned with lignite-based 
fertilizer and cropped with maize, with a crop 
yield estimated at 5.5 tonne/ha. The study site 
was ploughed to a depth of 300 mm, cultivated 
and was sown to a crop of Camelina sativa, 
cultivar GP202, in the autumn of 2012. During 
the growing season (May 2013) a crop survey 
was carried out; 12 randomly selected 1 metre 
squares being sampled for plant density, height 
and branching to assess crop viability. 
 
RESULTS AND DISCUSSION 
 
Soil  
The geochemical characterisation of the metals 
within the soil for the case study site, Rovinari-
Sterile showed pre-cultivation concentrations 
of the 11 target -metals As, Cd, Co, Cr, Cu, Fe, 
Mn, Ni, Pb, V, and Zn, to be 7.7 mg kg-1; 0.80 
mg kg-1;11mg kg-1; 35 mg kg-1; 19 mg kg-1; 
2%; 520 mg kg-1; 43 mg kg-1;10 mg kg-1; 30 
mg kg-1 and 58 mg kg-1 respectively. As, Cr 
and Ni concentrations were found to be in 
excess of the DITV and RRV, although they do 
not exceed the Target / Threshold (sensitive 
areas) of the DITV and RRV, respectively. 
Comparison of the data of the current research 
with concentrations reported by other authors 
(Dodocioiu and Susinski, 2010; Bălăceanu et 
al.¸2011; Gămăneci and Căpăţînă, 2011) for 
such metals in soils within 7.5 km radius of the 
thermal power plant at Rovinari showed the 
concentrations of Cd, Cu, Mn, Ni, Pb and Zn 
determined for this study site to be 
predominantly within the range determined in 

the earlier studies; whilst the soil concentration 
of Co at the Rovinari Sterile site was found to 
below the lower limit. The comparative 
differences in the concentrations of Cd, Co, Cu, 
Mn, Pb and Zn, may arise in part due to the 
location of the study site to the northeast of the 
Rovinari power complex. It is reported, that the 
predominant wind direction is from the north 
and northeast (Bălăceanu et al.¸2011). This 
may have resulted in a lower degree of 
enrichment of the soil by atmospheric 
deposition from power plant stack emissions 
than experienced by areas to the south and 
south-west of the power complex (Lazar et al., 
2008; Bălăceanu et al., 2011). Kruskal-Wallis 
one-way analysis of variance by ranks was 
used to identify any significant differences in 
the measure of central tendency for the 
determined soil metal concentrations from the 
pre-harvesting and pre-cultivation sampling. 
Significant differences (P<0.05) between the 
median values for the two samplings was 
observed for the metals, Al, Ba, Ca, Cd, Fe, K, 
Mg, Mo, S and Ti, of these Cd, Mg and S were 
the differences were found to be strongly 
significant (P < 0.001). The lack of any 
apparent significant difference between the pre-
harvesting and pre-cultivation median soil 
concentration of As, Co, Cr, Cu, Ni, Pb V and 
Zn suggests that in terms of remediative 
potential, suggests that the uptake in to the 
camelina crop is likely to be insufficient for 
such metals to have a measurable remediative 
affect in a single cropping year.  
 
Crop Survey and Production 
There appeared to be delineation in crop 
morphology between the southern and northern 
half of the field. In the southern part vigorous 
crop growth is observed with crop heights of 
30-82 cm, > 60% of plants displaying branched 
flower inflorescences and crop emergence 
commonly between 60-100%, with plant counts 
of 60-200/m2. By contrast, the northern section 
of the study site show higher plant counts/m2 
(260-450) but plants are characteristically 
smaller (20-70 cm) and exhibit spindly growth 
with lower incidence of branched flower 
inflorescences (< 60%). Foliar effects similar to 
those seen at other study sites (details discussed 
elsewhere in ITAKA deliverable D5.17 
suggesting underlying causative factors. Red 
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margins and red-orange mottling, along with 
necrotic lesions and interveinal chlorotic areas 
on leaves (Figure 2) were also noted. 
 

 
Figure 2. Stress induced variations in foliar chlorosis and 

discolouration at Rovinari study site 
 
To determine the viability of contaminated land 
for production of camelina, comparison with 
camelina crops grown on uncontaminated land 
in similar climatic and pedological conditions 
is desirable. Cultivation of camelina in the 
agronomic trial plots have been undertaken at 
the didactic farm Moara Domnească (SDE 
Belciugatele - USAVMB), Ilfov County, to 
determine optimal agronomy for the camelina 
crop varieties including GP202 and GP204 
(Dobre et al., 2014). Potential yields in excess 
of 1400 kg/ha were achievable but were 
dependent on cultivar. The best potential yields 
were found to occur with the camelina cultivar 
GP202.Consideration of the production (330 
kg/ha) from the Romanian contaminated land 
field site, Rovinari-Sterile finds that the 
production was 60% of that of achieved in the 
agronomic trials Moara Domnească, Ilfov when 
no chemical fertilizer is applied. The disparities 
in the yield of camelina between the agronomic 
trials and the contaminated study sites may not 
arise solely from the adverse influence of 
contaminant levels on nutrient uptake but may 
also reflect differences in soil parameters such 
as soil OM, soil mineralogy and soil acidity. 
 
Metal transference 
Typically, other research has primarily 
focussed on the uptake of metals into the roots, 
shoots and leaves (Ebbs and Kochian, 1997; 
Baryla et al., 2001; Chatterjee and Chatterjee, 
2000; Shanker et al., 2005; Yoon et al., 2006; 
Ben Ghnaya et al., 2009; John et al., 2009; 
Sinha et al., 2010; Pourrut et al., 2011; Tian et 
al., 2014). However due to need to assess 

whether of the uptake of the metals As, Cd, Co, 
Cr, Cu, Fe, Ni, Pb, V and Zn into the co-
products, such as oil meal and silicles (seed-
pods), are potentially detrimental to the 
business case for camelina, the concentrations 
of metals in the four compartments, roots, 
shoots, silicles and seed, were determined. The 
results of the analysis for the pre-harvest plant 
material from the 2012/2013 camelina crop 
cultivated at the Rovinari-Sterile site for the 
metals of concern to the aviation industry (Cd, 
Co, Cu, Fe, V and Zn) and metals of concern to 
the food chain (As, Cr, Ni and Pb) are 
presented in Figure 3. 
 

 

 

Figure 3. Concentrations of the specific target-metals in 
roots, shoots, silicles and seeds from Camelina sativa 

plant material harvested from the 2012-2013 cultivation 
at the Rovinari field site 
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Elemental analysis of the four plant 
components of roots, shoots, silicles, and seed 
from the Rovinari-Sterile case-study site, found 
that As, Cu and Zn were present in the highest 
concentrations within the seed. Given the well-
established relationship between As and P in 
both soil and plant material, this is not 
unexpected and the management of available 
soil P may be key to the future successful of 
camelina production on As contaminated sites.  
Consideration of the near parity noted between 
the root and shoot concentration of Cd and Zn, 
suggests not only a higher degree of 
transference of such metals from the roots into 
the aerial parts of the plants compared with As, 
Cr, Cu, Fe, Ni, Pb and V, but also possible 
similarities in the uptake mechanism into the 
plant, for example, the uptake of Cd via Zn2+ 
channels of low specificity (Clemens, 2006). 
Inspection of the subsequent differences in the 
partitioning of Cd and Zn in the silicles and 
seed (Figure 3) further suggest that in 
agreement with the findings for Brassica napus 
the storage of Cd in camelina is likely to be in 
the leaf and stem organelles rather than in the 
fruit of camelina as inferred for Zn (Baryla et 
al., 2001; Carrier et al., 2003; Verbruggen et 
al., 2009). 
The phytoremediation potential in terms of the 
ability of Camelina sativa to tolerate and 
accumulate the metals As, Cd, Co, Cr, Cu, Fe, 
Ni, Pb, V and Zn can be estimated using 
bioconcentration factors (BCF) and 
translocation factors (TF). 
Bioconcentration factors are used to assess the 
ability of a plant to accumulate metals from the 
soil and are defined as the ratio of metal 
concentration in the plant compartment (root, 
shoot, silicles, and seed) to that in the soil. A 
plant’s ability to tolerate or accumulate through 
the translocation of metals in the first instance 
from the roots to the shoots is assessed using 
TFs, which are defined as the ratios of metal 
concentration in the shoots to the roots. To 
examine the extent to which metals are 
transported to the silicles and seed after 
transference from the root to the aerial parts of 
the plant TFs for the movement of metals from 
the shoot to silicles and the shoot to seed were 
also calculated. The BCFs for the four plant 
compartments analysed for the Rovinari-Sterile 
camelina crop along with the corresponding 

TFs for the metals, As, Cd, Co, Cr, Cu, Fe, Ni, 
Pb, V and Zn are summarized in Table 1.   
Scrutiny of the BCFs determined that the 
camelina roots from the Rovinari-Sterile site 
were most efficient in taking up Cd, Cu and Zn 
(BCF: 0.39; 0.23; 0.26, respectively). 
Bioconcentration factors lower than 0.2 are 
expected where plants are grown on 
contaminated soil (McGrath and Zhao, 2003; 
Brunetti et al., 2010). Similarly the TF values 
suggest that camelina is most efficient at 
translocating the same three metals Cd (TF: 
0.91), Cu (TF: 0.68) and Zn (TF: 1.0).  

Table 1. Bioconcentration factors and translocation 
factors for the specific target-metals in Camelina sativa 

grown at the Rovinari site 

 
 
The transfer of metal contaminants to the shoot, 
silicles and seeds are found to decrease with the 
exception of the transfer of As, Cu and Zn from 
the soil to the seed. It may be anticipated that 
as Cu and Zn are essential plant micronutrients 
that the uptake and translocation in the plant 
would be enhanced. By contrast, the BCF for 
Cd is an order of magnitude higher than other 
non-essential metals such as As, Co, Cr, Ni, Pb 
and V considered. Other authors have 
suggested that TF values less than unity were 
indicative of tolerance to a given metal in the 
plant (Brunetti et al., 2010), and where TFs < 
0.60 this may be suggestive of restricted uptake 
and possible exclusion mechanisms being 
operational in the plant (Baker and Brooks, 
1989; Yoon et al., 2006). Brunetti et al. (2010) 
further suggested that TF values greater than 

As Cd Co Cr Cu Fe Ni Pb V Zn

Shoot/root

Silicles/shoots

Seed/shoot

Elemental concentration (mg kg - 1 dry weight)

Root/soil

Shoot/soil

Seed/soil

Silicles/soil

BCF

TF

Median
IQR

Median
IQR

Median
IQR

Median
IQR

Median
IQR

Median
IQR

Median
IQR

0.030
0.0091

0.018
0.0105

0.012
0.0228

0.045
0.0185

0.63
0.376

0.57
0.980

2.3
1.50

0.39
0.198

0.38
0.158

0.28
0.116

0.17
0.120

0.91
0.294

0.77
0.273

0.45
0.186

0.017
0.0091

0.0025
0.0318

0.0072
0.00965

0.050
0.0170

0.15
0.086

2.6
4.38

1.8
2.22

0.026
0.0123

0.016
0.00821

0.011
0.00596

0.0077
0.00233

0.59
0.291

0.81
0.775

0.53
0.374

0.23
0.0365

0.15
0.0311

0.25
0.0745

0.53
0.148

0.68
0.140

1.7
0.293

3.3
0.729

0.019
0.00755

0.0040
0.00199

0.0070
0.00849

0.0031
0.00150

0.24
0.103

2.4
2.2

0.90
0.703

0.024
0.0119

0.0068
0.00673

0.020
0.0322

0.0021
0.00994

0.23
0.29

3.5
6.95

3.2
3.84

0.039
0.0210

0.012
0.0173

0.023
0.0150

0.0067
0.0138

0.35
0.255

2.1
1.74

0.38
0.474

0.023
0.00964

0.0037
0.00238

0.0087
0.00877

0.00018
0.00126

0.17
0.0957

2.4
2.77

0.058
0.320

0.26
0.0955

0.24
0.131

0.047
0.0475

0.81
0.236

1.0
0.417

0.18
0.194

3.6
1.4
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one are indicative of accumulator plants, 
therefore it is possible that Camelina sativa has 
the potential to act as accumulator for Zn and 
Cd. Although it is known that other Brassica 
species act as hyper accumulators for Cd and 
Zn (Carrier et al., 2003; Verbruggen et al., 
2009) further work is needed to verify the 
accumulator status of camelina with respect to 
these two metals. Consideration of TFs 
calculated to assess the efficiency with which 
metals are transferred from the shoot into the 
silicles and seeds, suggest that whilst the 
movement of Co and Ni into the shoots from 
the roots may be restricted, once in the aerial 
part of the plant such metals are readily 
mobilized to the silicles and seeds. Further 
work is needed to assess the impact of such 
mobility on the food chain, should the any 
exclusion mechanisms that are operational be 
negated. The degree of variability displayed by 
the TF data suggests that there may be genetic 
variation in the ability to tolerate or accumulate 
metals within the plant population of the 
camelina crop (Yang et al., 2005). 
 
Oil 
Analysis of the oil extracted from the camelina 
grown on the four contaminated sites indicated 
that concentrations of Cd, Co and V were 
below the limit of detection. By contrast, Cu 
and Fe were present in all oil samples whilst 
there was no consistency in the occurrence of 
Zn in the oil samples. 
Consideration of the analysis of the oil 
extracted from the camelina grown on 
Rovinari-Sterile site indicated that 
concentrations of Cd, Co, Ni, V and Zn were 
below the limit of detection. Whilst the 
concentration of As (0.36 mg kg-1), Cu (0.66 
mg kg-1)and Fe (0.27 mg kg-1) present in the oil 
samples were at least an order of magnitude 
greater than those discerned for Cr (0.007 mg 
kg-1) and Pb (0.03 mg kg-1). 
Oil from camelina grown on a nominal non-
polluted site (Moara Domnească) was also 
analysed for comparative purposes. Analysis of 
the trace element concentrations in the 
composite oil samples for all the Romanian 
study sites, focused on the six metals Cd, Co, 
Cu, Fe, V and Zn, previously identified as 
problematic within aviation fuel and in keeping 
with the developed methodology. Scrutiny of 

the oil data sets suggest that in particular, for 
the concentration of Cu in the oil is influenced 
by the cultivar of camelina grown as well as 
soil characteristics such as pH and external 
crop nutrient inputs. 
 
CONCLUSIONS 
 
The use of the camelina co-products (oil-meal, 
silicles and straw) as a valuable component to 
animal feeds, in particular in the poultry 
industry, has been fundamental to the business 
case scenario for camelina biofuel production. 
Consideration is given to whether co-products 
from camelina crops produced on contaminated  
is likely to have the same import.  
Translocation factors for Cd and Zn suggest 
Camelina sativa has the potential to act as 
accumulator. Careful consideration of the use 
and value of the co-products from camelina 
grown on certain contaminated lands is 
therefore recommended:  The fractional 
distribution of metals in the oil and seed is non-
uniform, so the oil extraction process may 
affect a multiplicative increase in the 
concentration of metals in the crushed seed. 
Which when given the potential for direct 
access to the food chain from the use of meal 
for livestock fodder, and the use of shoot 
material as bedding material could be of 
concern. To minimize such concerns it is 
suggested that the use camelina straw from Cd 
contaminated sites is restricted to use as a soil 
conditioner, where appreciable cost benefits 
may be achieved in terms carbon sequestration 
and agronomic improvements in soil organic 
matter. 
Comparison of the oil metal concentrations 
determined for the four contaminated sites with 
that of oil from the nominally unpolluted site at 
Moara Domnească, highlight the need for 
further work to determine the effect of external 
crop inputs, such as nitrate fertilizers, on the 
uptake, translocation and storage of metals in 
the camelina crop grown on contaminated land. 
This study has developed an effective metho-
dology for the measurement of metals in the 
camelina value chain, and by evaluating and 
defining some of the specific vulnerabilities of 
camelina physiology, gone some way to 
answering the broad and rather imprecise 
question of ‘Can a biofuel such as camelina be 
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grown on contaminated land?’ The equally 
imprecise answer is ‘Yes, but site specific 
characteristics must be duly considered’. 
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