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Abstract 
 
Lactic acid bacteria (LAB) play a key role in the food fermentation process since they contribute to the texture, flavor, 
quality and conservation of the fermented products. Several LAB strains have been shown to produce 
exopolysaccharides (EPS), with potential applications in food industry, since they can act as natural thickeners that 
improve the texture of the final product, decrease syneresis and reduce the fat levels in fermented foods. In situ 
production of EPS by LAB to get a desired texture and mouthfeel of some fermented products is being explored, in 
order to replace polysaccharides from plants or animals, currently in use. Moreover, it has been suggested that some 
EPS produced by LAB have prebiotic activity, contributing to the promotion of human gastrointestinal health. During 
this study, five new EPS-producing LAB strains have been selected from 21 strains isolated from fermented vegetables. 
The mucoidness/ropiness of the colonies developed on MRS agar media containing different carbon sources (glucose, 
sucrose, fructose, galactose, lactose, or xylose) was firstly observed. EPS presence in the culture supernatant was 
detected through gel permeation chromatography (GPC). The EPS material was isolated from these strains by acetone 
precipitation, then dialysed, dried and weighted. The molecular mass was estimated by the same GPC method, while the 
monomer composition was determined by automated thin layer chromatography (TLC), after hydrolysis with 8N HCl. 
One of the positive strain, Leuconostoc mesenteroides/pseudomesenteroides 406 has been shown to produce large 
amounts of EPS, of about 15 g/L and two strains, Leuconostoc citreum/lactis/garlicum 167 and Leuconostoc sp. 208 
were able to produce around 6 g/L of EPS. All isolated EPS have a high molecular mass, of above 1400 KDa, and a 
monomer composition dominated by the presence of glucose. The influence of the growth medium composition and 
incubation temperature on the EPS biosynthesis was also investigated. Three LAB strains, that were shown to produce 
high amounts of EPS, have been selected to be used in this study. It was shown that some mild stress conditions might 
stimulate, in some cases, the EPS-production.  
 
Keywords: exopolysaccharides, fermented vegetables, lactic acid bacteria, salinity stress. 

INTRODUCTION 

Lactic acid bacteria (LAB) have been used 
around the world to improve the preservation, 
sensorial characteristics and nutritional value of 
a large variety of products, such as milk, meat 
and vegetables (Doyle and Beuchat, 2007; 
Wood and Holzapfel, 1995; Wood, 1997). 
Several LAB strains can also contribute to the 
improvement of the texture and viscosity of 
fermented products by means of the synthesis 
of exopolysaccharydes (EPS). EPS can be 
classified into two groups: 
homopolysaccharides (HoPS) and hetero-
polysaccharides (HePS) (De Vuyst and 
Vaningelgem, 2003; Hassan, 2008). HoPS are 
composed of one type of monosaccharide 
subunits, while HePS are formed from a 
backbone of repeated subunits of different 
monosaccharides, e.g. D-galactose, D-glucose 
or L-rhamnose, in different ratios. Well-known 

examples of HoPS include the dextrans and 
fructans produced by Leuconostoc 
mesenteroides and Streptococcus salivarius, 
respectively (De Vuyst and Degeest, 1999), 
while HePS are synthetized by many LAB 
including strains of Streptococcus 
thermophilus, Lactococcus lactis and a number 
of lactobacilli (De Vuyst el at. 2001).  
Although their function and relevance for the 
bacteria are not completely understood, it has 
been suggested that EPS may play a significant 
role in the protection of cells against 
dehydration, phagocytosis, phage attacks or 
toxic compounds (De Vuyst et al., 2001). EPS 
may also contribute to the adhesion of 
microorganisms onto solid surfaces and to 
intercellular communications (De Vuyst and 
Degeest, 1999). EPS may also alter the techno 
functional properties (e.g. viscosity or water 
binding capacity) of fermented foods such as 
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yogurt, cheese or sourdough (Hassan and 
Awad, 2005; Costa et al., 2010) and, 
consequently, the sensory properties of these 
products (Mozzi et al., 2006). Therefore, LAB  
that show a capacity to excrete EPS can be 
used to replace thickeners and stabilizers such 
as polysaccharides of animal (gelatin), plant 
(starch, pectin) or other microbial origin 
(xanthan). A further advantage is their GRAS 
(Generally Recognized As Safe) status, which 
means that LAB and their metabolites are 
considered safe and no declaration is needed 
when they are added to food. 
The mechanism of EPS synthesis has been 
extensively studied for years (Joly et al., 2002; 
Wellman and Maddox, 2003). The amounts of 
EPS produced by LAB is strongly dependent 
on the growth medium composition 
(carbohydrate and nitrogen source, C/N ratio, 
vitamins, salts and other supplements) (De 
Vuyst and Degeest, 1999; De Vuyst et al., 
2001; Seesuriyachan, 2012). Moreover, 
fermentation conditions such as temperature, 
environmental pH, and the presence of oxygen 
also have a significant impact on EPS synthesis 
(Boels et al., 2003; Svensson et al., 2005). 
The aim of this study was to isolate and 
characterize some EPS produced by LAB 
isolated from traditional Romanian fermented 
vegetables and to study the influence of growth 
medium composition and the incubation 
temperature on the biosynthesis of these EPS. 
 
MATERIALS AND METHODS  
 
Bacterial strains and media 
LAB used throughout this study were isolated 
from traditional Romanian fermented 
vegetables: green tomatoes (1 strain), 
cauliflower (2 strains), carrots (4 strains) or 
brine (14 strains). Strains were isolated by 
plating on MRS agar (de Man et al. 1960), 
purified, identified to species level by (GTG)5-
PCR fingerprinting and 16S rRNA sequencing 
(Wouters et al., 2013). Strains were stored at  -
75°C in MRS broth containing 25% (v/v) of 
glycerol as a cryoprotectant.  
When screened for EPS production, LAB 
strains were grown in modified MRS medium 
containing 50 g/L sucrose instead of glucose. 
Glucomannans that could interfere with the 
EPS screening were removed through 

ultrafiltration according to the method 
described by Van der Meulen et al. (2007). 
 
Screening for EPS production 
A preliminary method to evaluate the capacity 
to produce EPS, was by observing the 
mucoidness/ropiness of the colonies developed 
on MRS agar media containing different carbon 
sources: glucose (20 g/L), sucrose (50 g/L), 
fructose (20 g/L), galactose (20 g/L), lactose 
(20 g/L), or xylose (20 g/L). 
The 21 LAB strains were then screened for 
EPS production through gel permeation 
chromatography (GPC), using a Jasco HLPC 
system (Jasco Europe, Cremella, Italy), 
equipped with an UltrahydrogelTM Linear 
column (Waters Corp., Milford, Mass., USA), 
kept at 35°C, and coupled to a RI-2031 
refractive index detector (Jasco). Samples were 
prepared according to the method described by 
Van der Meulen et al. (2007). The EPS were 
eluted with 0.1 M NaNO3 at a flow rate of 0.6 
mL/L. Dextran standards ranging from 80 kDa 
to 1.4 Mda (Sigma-Aldrich, Switzerland) were 
used to estimate the molecular mass of the 
EPS.   
 
EPS Isolation and Quantification 
Isolation of EPS was carried out from 24 h 
cultures obtained in 25 mL of  filtered MRS 
supplemented with 50 g/L of sucrose, without 
pH control or agitation. EPS was isolated 
according to De Vuyst et al. (1998). Total EPS 
yields were determined gravimetrically by 
measuring the polymer dry mass (PDM). 
Further purification of the EPS was done by 
dialysis against distilled water at 4°C for 7 
days, with a water replacement twice a day.  
 
Monomer Analysis 
The purified EPS were hydrolysed for 6 h at 
100°C with 8N HCl, evaporated in an 
Eppendorf AG centrifugal concentrator 
(Eppendorf, Hamburg, Germany) and 
resuspended in ultrapure water. 
Monosaccharide composition of EPS was 
determined by automated thin-layer 
chromatography (TLC) (CAMAG, Muttenz, 
Germany) using the ascending technique with 
silica gel 60 F254 precoated glass sheets 
(Merck, Damstadt, Germany). The sugars were 
eluted with a mixture of 1-butanol/acetic 
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the highest potential for EPS production and 
this concurs with our findings. The EPS 
production of the five selected strains isolated 
from Romanian fermented vegetables could be 
correlated with the mucoidness of the colonies 
developed on MRS with 50 g/L of sucrose 
(Table 1). From all GPC-positive strains, EPS 
could be isolated in various amounts from 
cultures obtained in filtered modified MRS, by 

acetone precipitation. Leuconostoc 
mesenteroides/pseudomesenteroides 406 has 
been shown to produce large amounts of EPS, 
of about 15 g/L and two strains, Leuconostoc 
citreum/lactis/garlicum 167 and Leuconostoc 
sp. 208 were able to produce around 6 g/L of 
EPS. For two Leuc. citreum strains 96 and 247, 
EPS yielded 0.21 and 1.02 g/L, respectively.

 
Table 1. Growth and mucoidness of LAB strains on agar MRS with different carbon sources 

Strain MRS-glc MRS-suc MRS-fruct MRS-galact MRS-xil MRS-lact 

unidentified 56 
Leuc. mesenteroieds 69 
Leuc. citreum 96 
Leuc. mesenteroides 97 
Leuc. citreum/lactis/garlicum167 
Lb. parabrevis 196 
Leuc. mesenteroides 197 
Lb. plantarum 198 
Leuc. sp. 208 
unidentified 234 
Lb. plantarum 235 
Leuc.  mesenteroides/ 
pseudomesenteroides 246 
Leuc. citreum 247 
Lb. pentosus 265 
Lb. parabrevis 341 
Leuc. mesenteroides 355 
Lb. brevis 403 
Leuc. mesenteroides/ 
pseudomesenteroides 406 
Lb. brevis 530 
Lb. plantarum 616 
Lb. plantarum 619 

+ 
+ 
+/- 
+ 
+ 
+ 
+ 
+ 
+ 
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+ 
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+ 
+ 
+ 
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- 
+ 
+ 
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+ 
+ 
- 
+ 
+ 
+ 
+ 
- 
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+ 
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+/- 
- 
+ 
+ 
+ 
+ 
 
- 
+ 
+ 
+ 

+/- 
+ 
- 
+ 
- 
+/- 
+ 
- 
- 
+ 
+ 
 
+ 
+/- 
+ 
+/- 
+ 
+ 
 
+/- 
+ 
+ 
+ 

vm = very mucoid; m = mucoid;  
+ = good growth; +/- = poor growth; - = no growth 
 
The GPC chromatograms revealed that all EPS 
eluted before the elution of the largest dextran 
standard available (molecular mass of 1.4 
MDa), indicating that the molecular mass of all 
EPS exceeded this value. High molecular mass 
EPS (both HoPS and HePS) produced by LAB 
strains isolated from fermented dairy products 
or fermented vegetables have been previously 
described (Vaningelgem et al., 2004c; Van der 
Meulen et al., 2007; Grosu-Tudor and Zamfir, 
2013). An estimation of the molecular mass of 
a certain EPS can be important for its 
characterization, taking into account that the 
molecular mass is an important factor in 
determining the intrinsic viscozity and 
functional properties of EPS (Ruas-Madiedo et 
al., 2002). High molecular mass polymers can 
be used as viscosifiers, emulsifiers, gelling, or 

stabilizing agents to modify the rheological 
properties and texture of food product (Joly et 
al., 2002; Patel et al., 2010). 
The monomer composition of the isolated EPS 
was determined by TLC of the hydrolyzed 
samples. For the strain Leuc. citreum 96, a light 
fading band was detected, corresponding to 
glucose, while for the other four strains tested, 
several bands could be observed (Fig. 3).  
The major band corresponds to glucose, while 
the others might be other monosaccharides 
from the EPS composition, which could not be 
correlated with any of the sugars used as 
standards. However, the presence of these 
additional bands might be also explained by an 
incomplete hydrolysis of the EPS. Further use 
of additional standards or the use of 
complementary analysis, such as HPLC, would 
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Table 2. Growth parameters and EPS yields of the tested strains at different temperatures 
Strain Temperature O.D. 

600nm 
Final pH Cell count 

(CFU/mL) 
EPS yield 

(g/L) 
Leuc. citreum 52 
Leuc. citreum 52 
Leuc. citreum 52 
Leuc. citreum 52 
Leuc. sp. 208 
Leuc. sp. 208 
Leuc. sp. 208 
Leuc. sp. 208 
Leuc. mesenteroides/pseudomesenteroides 406 
Leuc. mesenteroides/pseudomesenteroides 406 
Leuc. mesenteroide/pseudomesenteroidess 406 
Leuc. mesenteroides/pseudomesenteroides 406 

20°C 
28°C 
37°C 
42°C 
20°C 
28°C 
37°C 
42°C 
20°C 
28°C 
37°C 
42°C 

5.753 
7.807 
6.304 
3.108 
6.202 
8.333 
6.323 
3.939 
5.215 
6.126 
0.357 
0.288 

4.12 
3.80 
3.83 
4.27 
4.11 
3.72 
3.63 
3.95 
4.38 
4.33 
5.47 
5.63 

3.5 x 1013 

5.5 x 1012 

5.7 x 1011 

3.05 x 108 

4.05 x 1013 

4.2 x 1013 

9.3 x 1012 

2.2 x 1011 

2.6 x 1012 

1.8 x 1013 

7.9 x 108 

2.5 x 107 

14.52 
11.73 
5.28 
0.31 
8.43 
4.56 
0.12 
0.28 
13.47 
16.02 
0.90 
0.38 

 
All tested strains showed a good growth in the 
presence of NaCl at 28°C (Table 3). 
Concerning the EPS production, Leuc. 
mesenteroides/pseudomesenteroides 406 
reached the maximum yield in the presence of 
5% NaCl, after 24 h of incubation at 28°C 
(25.83 g/L), higher than the amount produced 
under optimal conditions (16.02 g/L) and three 
times the value obtained in the presence of 1% 
NaCl (8.68 g/L). This is in accordance with the 
results obtained by Seesuriyachan et al. (2012), 
who report increased EPS production by 
Lactobacillus confusus under high salinity 
stress. Although Leuc. mesenteroides/ 
pseudomesenteroides 406 reached the highest 

EPS yields at 5% NaCl, the biomass production 
was the lowest, showing that high salinity 
stress can have a negative impact on microbial 
growth. On the contrary, Leuc. sp 208 and 
Leuc. citreum 52 showed a good growth in the 
presence of all concentrations of NaCl used, 
but they lost the ability to synthesise EPS under 
salinity stress, except for Leuc. citreum 52, 
which still produced 1.68 g/L EPS in the 
presence of 1% NaCl. Evidence of inhibition of 
EPS production by NaCl has been also reported 
in the cultivation of Lactobacillus helveticus 
ATCC 15807 (Torino el al., 2005) and 
Pediococcus parvulus 2.1 (Velasco et al., 
2006).  

 
Table 3. Growth parameters and EPS yields under salinity stress at 28°C 

Strain NaCl 
 

O.D. 600nm Final pH Cell count 
(CFU/mL) 

EPS yield 
(g/L) 

Leuc. citreum 52 
Leuc. citreum 52 
Leuc. citreum 52 
Leuc. sp. 208 
Leuc. sp. 208 
Leuc. sp. 208 
Leuc. mesenteroides/pseudomesenteroides 406 
Leuc. mesenteroides/pseudomesenteroides 406 
Leuc. mesenteroides/pseudomesenteroides 406 

1% 
3% 
5% 
1% 
3% 
5% 
1% 
3% 
5% 

7.461 
5.863 
5.042 
7.759 
6.080 
5.751 
5.995 
5.789 
4.748 

3.69 
3.71 
3.52 
3.66 
3.67 
3.40 
4.15 
4.09 
4.18 

5 x 1013 

2.7 x 1012 

1.2 x 1013 

1.5 x 1013 

7.6 x 1013 

7.3 x 1013 

2.6 x 1013 

1.6 x 1013 

8.05 x 1011 

1.68 
0 
0 
0 
0 
0 

8.68 
16.53 
25.83 

 
When incubated at 20°C, Leuc. 
mesenteroides/pseudomesenteroides 406 grew 
well in the presence of all concentrations of 
NaCl tested (Table 4). The other two strains 
showed a good growth in the presence of 1% 
NaCl (24 h) and a slower growth in the 
presence of 3% NaCl (48 h), while at higher 

concentration of NaCl (5%) they needed 72 h 
for growth. Under these growth conditions, 
Leuc. sp. 208 has lost again the ability to 
synthetize EPS, while Leuc. citreum 52 was 
still able to produce low amounts in the 
presence of 1% NaCl, although much lower 
compared with the yields obtained under 
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normal conditions. Leuc. mesenteroides/ 
pseudomesenteroides 406, was able to produce 
very high EPS amounts (over 11 g/L) at 20°C, 
in the presence of NaCl upto 5%. However, in 

the presence of 5% NaCl, the production was 
lower, probably due to the combined effect of 
two stress factors (lower incubation 
temperature and high salinity) (Table 4). 

 
Table 4. Growth parameters and EPS yields under salinity stress at 20°C 

Strain NaCl 
 

O.D. 600nm Final pH Cell count 
(CFU/mL) 

EPS yield 
(g/L) 

Leuc. citreum 52 
Leuc. citreum 52 
Leuc. citreum 52 
Leuc. sp. 208 
Leuc. sp. 208 
Leuc. sp. 208 
Leuc. mesenteroides/pseudomesenteroides 406 
Leuc. mesenteroides/pseudomesenteroides 406 
Leuc. mesenteroides/pseudomesenteroides 406 

1% 
3% 
5% 
1% 
3% 
5% 
1% 
3% 
5% 

2.083 
5.096 
2.274 
2.684 
5.728 
4.589 
6.405 
5.611 
2.883 

5.04 
3.98 
4.35 
4.80 
3.80 
3.64 
3.95 
4.03 
4.66 

3.1 x 1010 

1.2 x 1013 

2.4 x 1013 

9 x 1010 

1.8 x 1013 

3.1 x 1012 

1.7 x 1013 

3.2 x  1012 

1.5 x 1010  

0.716 
0 
0 
0 
0 
0 

17.42 
17.60 
11.91 

 
CONCLUSIONS 
  
In conclusion, this study provides information 
about new LAB strains isolated from fermented 
vegetables, able to produce large amounts of 
EPS, with potential application in food 
biotechnology (i.e. to improve the rheological 
properties of fermented products). The EPS 
isolated during this study are, most probably, 
HoPS, composed of glucose solely, and they 
have a high molecular mass. The incubation 
temperature and the presence of NaCl in the 
growth medium significantly affected the EPS 
production. The highest EPS yield, of over 25 
g/L, was obtained for Leuc. 
mesenteroides/pseudomesenteroides 406 grown 
at 28°C, in the presence of 5% NaCl. 
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