
352

 
THE DYNAMICS OF LIVE AND DEAD CELLS, AND COLONY FORMING 

UNITS OF E. COLI DH5 α STRAIN KEPT FOR FIVE DAYS AT 18°C IN 
MICROCOSMS CONTAINING FILTERED AND UNFILTERED SEA 

WATER  
 

Roxana Gabriela CRISTINA and Ioan I. ARDELEAN 
 

Institute of Biology Bucharest, Romanian Academy Splaiul Independentei 294, Bucharest, 
Romania, Email: roxy_mvb@yahoo.com, ioan.ardelean57@yahoo.com 

 
Corresponding authors email: roxy_mvb@yahoo.com, ioan.ardelean57@yahoo.com 

 
Abstract 
 
The aim of this study is to determine the time-evolution of live and dead cells as well as the number of colony forming 
units of E. coli strain DH5α after the passage from LB medium to seawater indoor microcosms. In order to determine 
the dynamics and survivability capacity with respect to the absence or presence of bacterivores microorganisms  E. coli 
sub-samples were housed in three different microcosms containing filtered (0.22 or 0.45 µm pores) and unfiltered sea 
water. The microcosms were kept for five days in a sterile environment at a constant temperature of 18 °C in the dark. 
The samples collected were examined by fluorescent microscopy (SYBER green and Ethidium homodimer) for the 
determination of cell density (total /dead) and colony forming units quantification (LB and Levine media) in order to 
establish C.F.U. growth. The results presented in this paper show that the shocks associated with the passage from LB 
medium to sea water indoor microcosms (hypothermic, hypo-osmotic, including low levels of nutrients, and the 
presence of bacterivores microorganisms) play a key role in the survival of E. coli cells in this five days period. 
 
Key words: E. coli, live cells, colony forming units, protozoa predation, microcosm. 
  
INTRODUCTION 
 
During the last decades the Black Sea waters 
have suffered multiple changes due to pollutant 
discharge. Human interventions and hydraulic 
regime of the rivers played an important role in 
the changes of the phytoplankton, zooplankton 
and zoobenthos (Bologa et al., 1995; Bakan 
and Buyukgungor, 2000).  
Similar unsteadiness in sea waters worldwide 
has driven researchers to study the harmful 
contingent risks of multiplication of potential 
pathogenic bacteria such as E. coli (Greenberg, 
1956; Lessard et al., 1983; Davies et al., 1995). 
Numerous studies show that changes in sea 
water like high temperatures due to global 
warming, salinity, nutrient availability, light 
radiation and protozoa predation influences the 
survival of potential pathogen bacteria (Carlucci 
et al., 1961; Gameson and Gould, 1975; Fujioka 
et al., 1981; Anderson et al., 1983; Ingraham 
and Marr, 1996; Trousseller, 1998). 
Taking all into consideration, we felt that a 
study that features the current stage of the 
Black Sea waters particularities regarding 
potential pathogenic cell multiplication is 

necessary and important in order to monitor the 
evolution of bacteria such as E. coli that had 
accidentally reached sea water by shedding and 
polluted sewage. 
The aim of this paper is to monitor the 
dynamics of  Escherichia coli cells (live, dead) 
and their ability to grow and multiply after 
being kept in three different microcosms 
containing filtered (0.22 or 0.45 µm pores) and 
unfiltered sea water at 18 °C for five days. 
 
MATERIALS AND METHODS 
 
Strain and Sampling 
We used a nonpathogenic strain of E. coli 
(DH5α) that was previously grown in LB 37 °C 
on an orbital shaker (150 rpm). The cells were 
collected after 18 hours of growth and were 
aseptically washed two times in sterile 
phosphate buffer saline to eliminate organic 
substrate. 
The sea water was collected in the autumn 
from the Black Sea territorial waters 
(Constanta) at 1 m depth. The water was 
filtrated into sterile bottles using either 0.22 µm 
Millipore or 0.45 µm Millipore filters. 
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