
23

  
  

 
STIMULATION OF SEABUCKTHORN (Elaeagnus rhamnoides) 

MICROBIAL SYMBIOSES  
 

Ion-Mihai GIURESCU1, 2, Călina Petruța CORNEA1, Florin OANCEA3, 1 

 
1University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăşti Blvd, 

1st District, Bucharest, Romania 
2BioCătina, 88 Calea Moșilor, sc. B, et.2, ap.28, 3rd District, 030152, Bucharest, Romania 

3National Institute for Research and Development in Chemistry and Petrochemistry -  
ICECHIM Bucharest, 202 Spl. Independentei, 6th District, Bucharest, Romania 

 
Corresponding author email: florin.oancea@icechim.ro  

 
Abstract  
 
This paper reviews the present knowledge regarding the stimulation of the microbial symbioses of the sea buckthorn 
(Elaeagnus rhamnoides syn. Hippophae rhamnoides). Sea buckthorn is an actinorhizal plant, developing nitrogen-
fixing symbioses with the actinobacteria from the Frankia genus. At the same time, sea buckthorn roots can form 
endomycorrhizal symbioses with various arbuscular mycorrhizal (AM) fungi. AM symbiosis increases nutrient uptake 
and nutrient use efficiency, especially on phosphorus and micro-elements. Due to these microbial symbioses, sea 
buckthorn is an efficient colonizer of marginal lands and a suitable crop for low-inputs organic/ecological farming. 
Helper bacterial strains were demonstrated to promote microbial symbiosis between Frankia actinobacteria or AM 
fungi with roots of other host plants. Only scarce and indirect information suggests the involvement of gram-positive, 
endospore-forming bacteria as a helper of microbial symbiosis for sea buckthorn. Also, there is no information 
regarding the role of rhizosphere signals in promoting the sea buckthorn microbial symbioses. The finding of this paper 
highlights the need for future works focused on the stimulation of sea buckthorn symbioses.  
 
Key words: sea buckthorn symbioses, Frankia actinobacteria, arbuscular mycorrhizal fungi, bacterial helper, 
rhizosphere signals.  
 
INTRODUCTION 
 
Sea buckthorn, Elaeagnus (synonym 
Hippophae) rhamnoides (L.) A. Nelson 
cultivation is continuously expanding due to its 
high economic value and significant ecological 
benefits (Ciesarová et al., 2020). E. rhamnoides 
is a deciduous, thorny shrub native to different 
regions of Europe and Asia, with high 
resistance to cold and drought.  
Eight subspecies of E. rhamnoides were 
described: E. (H.) rhamnoides spp. fluviatilis 
Soest, from Alpes, radiating also in Apennines 
and Pyrenees; E. (H.) rhamnoides spp. 
rhamnoides, from northwestern Europe; E. (H.) 
rhamnoides ssp. carpatica Roussi, Carpathian 
mountains, low Danube basin, northwestern 
shore of the Black sea; E. (H.) rhamnoides ssp. 
caucasica Rousi, between Black and Caspian 
sea; E. (H.) rhamnoides spp. mongolica Rousi, 
from the Altai Mountains, Lake Baikal basin, 
and Outer Mongolia; E. (H.) rhamnoides spp. 
sinensis Rousi, from western China and Inner 

Mongolia; E. (H.) rhamnoides spp. turkestana, 
from the northern part of Himalaya; E. (H.) 
rhamnoides spp. yunnanensis, from western 
China, Yunnan, western Sichuan (Swenson & 
Bartish, 2002). 
In its wild state, the sea buckthorn has been 
recognized for millennia as a plant with health 
benefits in different parts of the world - in 
Europe, by the ancient Greeks, and in Asia, in 
early Chinese Pharmacopeia and ayurvedic 
medicine (Suryakumar & Gupta, 2011; Wani et 
al., 2016). 
In the last decades, sea buckthorn started to be 
domesticated (Li & Schroeder, 1996). Various 
chemometric and molecular genetic techniques 
were developed to characterize the affiliation of 
different domesticated cultivars to different 
subspecies: E. rhamnoides subsp. carpatica, 
from Romania (Buzoianu & Socaciu, 2014); E. 
rhamnoides ssp. sinensis, E. rhamnoides ssp. 
yunnanensis, E. rhamnoides ssp. turkestana 
and E. rhamnoides ssp. mongolica, from China 
genetic pool (Liu et al., 2018), E. rhamnoides 
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ssp. mongolica from Russia, China, and 
Mongolia (Ruan et al., 2004), E. rhamnoides 
ssp. fluviatilis from Latvia (Lacis & Kota-
Dombrovska, 2014). 
The economic and ecological benefits of sea 
buckthorn are directly related to its ability to 
form microbial symbioses, with nitrogen-fixing 
actinobacteria and with arbuscular mycorrhizal 
(AM) fungi. This paper aims to review the pre-
sent knowledge related to the stimulation of the 
sea buckthorn symbioses and the importance of 
such technological intervention to enhance 
further the economic value and the ecological 
benefits of sea buckthorn cultivation. 
Our goal is to highlight the existing gap in 
knowledge. The perspectives of the better 
exploitation of sea buckthorn symbioses by 
their stimulation through technological 
intervention are also considered and discussed. 
 
BENEFITS OF SEA BUCKTHORN 
CULTIVATION  
 
The high economic value of the sea buckthorn 
is determined by the beneficial effects on 
human health of the active ingredients from its 
fruits and leaves (Gatlan & Gutt, 2021).  
Fruits are used to produce a nutritious, healthy 
beverage and seed oil (Beveridge et al., 1999). 
The pulp remaining from the mechanical 
extraction of juice and oil is further used for the 
production of food additives (X. Guo et al., 
2019) and tocopherols (Kitrytė et al., 2017). 
The healthy beverage produced by mechanical 
squeezing of the berry pulp retains most of the 
hydrophilic antioxidants (i.e., hydrophilic 
polyphenols/flavonoids and vitamin C/ascorbic 
acid) and the lipophilic bioactive ingredients, 
i.e., carotenoids, tocopherols, flavanols, and 
(mono)unsaturated fatty acids, including ω-7 
palmitoleic acid (Bal et al., 2011; Ciesarová et 
al., 2020).  
Due to this unique combination of active 
ingredients, sea buckthorn healthy beverage is 
highly efficient as a dietary supplement in 
various health conditions (Ursache et al., 2017). 
Sea buckthorn is efficient against metabolic 
disorders and associated cardiovascular 
diseases (Olas, 2016). Sea buckthorn has 
demonstrated antiproliferative effects on 
human liver and colon cancer cell lines (Grey 

et al., 2010) and on prostate, breast, and gastric 
adenocarcinoma (Boivin et al., 2007). 
The antioxidant effect of sea buckthorn juice is 
involved in the prevention of both cancer and 
cardiovascular diseases (Olas & Skalski, 2022; 
Olas et al., 2018). Scavenging of the reactive 
oxygen species (ROS) and the resulting 
modulation effect on ROS level are also related 
to the immunomodulatory and anti-
inflammatory effects (Ren et al., 2020). 
E. rhamnoides is one of the few natural sources 
of the rare palmitoleic acid (16:1 n-7), a 
monounsaturated fatty acid (MUFA) with high 
physiological significance (Dąbrowski et al., 
2022). Palmitoleic acid prevents and reverses 
the metabolic syndrome by increasing insulin 
sensitivity (Hu et al., 2019), mainly due to its 
lipokinine function, i.e., an endo-signal of 
adipose tissue (Frigolet & Gutiérrez-Aguilar, 
2017). The carotenoids from sea buckthorn 
healthy beverage synergize the palmitoleic acid 
reversing effect on metabolic syndrome 
(Marcelino et al., 2020; Matsumoto et al., 
2021). Carotenoids level is very high in sea 
buckthorn beverages, their specific color being 
related to this high carotenoids content (Pop et 
al., 2015).  
The hydrophilic antioxidants from the sea 
buckthorn healthy beverage, ascorbic acid, and 
polyphenols also target metabolic syndrome 
and type II diabetes (Liu et al., 2019; Zheng et 
al., 2020). The flavonoids existing in the 
healthy beverages that are obtained from             
E. rhamnoides berry, ursolic acids (Grey et al., 
2010), flavonoid aglycones, including 
quercetin, isorhamnetin, and kaempferol (Guo 
et al., 2017) and flavonol glycosides 
(Enkhtaivan et al., 2017), were proven to have 
pro-apoptotic and antiproliferative activity of 
the sea buckthorn extracts. 
The oil obtained from sea buckthorn seeds is 
emollient and it is used in various cosmetic 
products (Beveridge et al., 1999). The dried sea 
buckthorn pomace has a high nutritional value 
due to its high content in lipids with essential 
fatty acids, proteins with high content of 
essential amino acids, and prebiotic fibers 
(Nour et al., 2021). 
The leaves of sea buckthorn are used for the 
production of tea (Ma et al., 2019), and various 
types of extracts are used for cosmetic and 
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dietary supplements (Asofiei et al., 2019; Criste 
et al., 2020). 
The health effects of sea buckthorn are 
enhanced by organic farming. Organic farming 
has been proved to increase the polyphenols 
and flavonoids content on sea buckthorn leaves 
(Heinäaho et al., 2006) and fruits (Heinaaho et 
al., 2009). Sea buckthorn is an appropriate plant 
to be cultivated in organic farming because of 
its microbial symbioses with nitrogen-fixing 
actinobacteria and mycorrhizal (AM) fungi (Li 
et al., 1996; Tian et al., 2002). These symbioses 
significantly support fertilization and plant 
protection organic management. 
The ecological benefits of sea buckthorn crops 
are water conservation and soil formation (La, 
2020), marginal land colonization and recla-
mation of the degraded land (Enescu, 2014), 
and soil decontamination by immobilization of 
potentially toxic elements (Nowakowska et al., 
2017). The ecological benefits of the sea 
buckthorn cultivation are also significantly 
promoted by its symbioses with nitrogen-fixing 
actinobacteria and AM fungi (Constandache et 
al., 2016; Zhao et al., 2013).  
 
BENEFITS OF SEA BUCKTHORN 
SYMBIOSES 
 
The symbioses between sea buckthorn and 
actinobacteria from Frankia genera generated 
nitrogen-fixing nodules. The difference 

between actinorhizal nodules and legume 
nodules is in hosting bacterial symbiont. In 
legume nodules, rhizobia differentiate in 
organelle-like structures, called symbiosomes, 
and in actinorhizal nodules, the bacteria remain 
not-differentiated (Holmer et al., 2017). The 
actinorhizal nodules are nitrogen-fixing 
nodules, the bacteria fixing atmospheric 
oxygen based on the carbohydrates supplied by 
the sea buckthorn (Nguyen & Pawlowski, 
2017). 
The sea buckthorn roots form endomycorrhizal 
symbioses with various arbuscular mycorrhizal 
(AM) fungi. AM fungi are essential for the 
mobilization of soil phosphorus and 
phosphorus acquisition by the plant (Smith et 
al., 2011). Besides the phosphorus, AM fungi 
also increase the bioavailability and uptake by 
the plant root of the microelements (Willis et 
al., 2013). 
The benefits of the microbial symbioses are not 
related only to improved nutrient acquisition 
(Figure 1). Due to extended microbial sym-
bioses, sea buckthorn is an excellent colonizer 
of marginal and/or degraded lands (Enescu, 
2014). Both actinorhizal and AM symbioses 
immobilize potentially toxic elements (e.g., Cu 
ions), by different mechanisms - by detoxify-
cation by metallophore in the case of Frankia 
(Mohr et al., 2021) and by immobilization in 
the fungal mycelium by AM fungi (Cabral et 
al., 2015). 

 

 
Figure 1. Illustration of the benefits of the microbial symbioses for the sea buckthorn  
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The benefits of microbial symbiosis for sea 
buckthorn are not limited to the support for the 
colonization of marginal and poor lands. The 
nitrogen fixation and improved phosphorus and 
microelement nutrition support organic farming 
management (Kalia et al., 2011). The AM 
symbiosis determines and improves nutrient 
uptake and nutrient use efficiency, leading to 
higher mineral content in sea buckthorn leaves 
(Jaroszewska et al., 2016). The actinorhizal 
symbiosis increase plant tolerance to abiotic 
stress (Diagne et al., 2013). Symbiosis with 
AM fungi also determines an increased 
tolerance to abiotic stress (Begum et al., 2019).  
Several of the effects of microbial symbiosis on 
sea buckthorn performances are presented in 
Table 1. Actinorhizal and mycorrhizae 
symbioses enhance sea buckthorn performance, 
both in terms of economic added value and 
ecological services. 
 

Table 1. Effects of the microbial symbioses on sea 
buckthorn performances 

Symbiosis Effect Reference 
Actinorhizal 
symbiosis 

Ability to grow in soil with 
low available nitrogen (Li et al., 2014) 

Actinorhizal 
symbiosis 

Detoxification of the 
potentially toxic element 

ions – e.g., Cu2+ 
(Mohr et al., 2021) 

Actinorhizal 
symbiosis 

Enhancement of the 
content of the active 

ingredient 

(Kanayama et al., 
2008) 

Mycorrhizae 
symbiosis  

Enhanced growth in 
marginal land (Zhang et al., 2020) 

Mycorrhizae 
symbiosis  

Increased level of mineral 
and bioactive ingredients in 

sea buckthorn leaves 

(Jaroszewska & Biel, 
2017; Jaroszewska et 

al., 2016)  

Mycorrhizae 
symbiosis  

Increased level of mineral 
and bioactive ingredients in 

sea buckthorn fruits 

(Jaroszewska et al., 
2018) 

 
The microbial agents that form symbioses with 
the sea buckthorn have the characteristics of the 
microbial plant biostimulants. By definition, 
plant biostimulants enhance/benefit nutrient 
uptake, increase tolerance to abiotic stress and 
improve crop quality (du Jardin, 2015). AM 
fungi were included for almost a decade in the 
category of microbial plant biostimulant 
(Rouphael et al., 2015). Symbiotic nitrogen-
fixing bacteria from Frankia genera were not 
yet considered plant biostimulants. However, 
the rhizobia that produce nitrogen-fixing 
nodules in legumes are already included in this 
category of microbial plant biostimulants 
(Hendriksen, 2022). These microbial plant 
biostimulants need better exploitation in the sea 

buckhorn farming system, especially in the 
organic farming system. 
 
TECHNOLOGICAL INTERVENTION 
FOR STIMULATION OF SEA 
BUCKTHORN SYMBIOSES 
 
Despite the importance of microbial symbioses 
for sea buckthorn cultivation, the technological 
interventions intended to stimulate/amplify the 
formation and development of such symbioses 
are insufficiently studied. 
The microorganism from sea buckthorn 
symbioses interact in a synergic manner (Zhou 
et al., 2017), and dual inoculation stimulates 
plant growth and development and nitrogen 
fixation (Tian et al., 2002). 
Actinobacteria from Frankia genera and AM 
fungi use common rhizosphere exo-signals to 
detect their host - e.g., flavonoids (Abdel-Lateif 
et al., 2012). The exchange of exo-signals 
between microbial symbionts and their host is 
promoted by the humic and fulvic acids 
(Capstaff et al., 2020; Gryndler et al., 2005). 
Several rhizobacteria enhance the formation of 
symbiosis - helper bacteria for mycorrhizae and 
nitrogen-fixing bacteria (Frey-Klett et al., 2007; 
Ghodhbane-Gtari et al., 2021; Teng et al., 
2015). These stimulation means could be 
included in technological interventions 
intended to enhance the formation of microbial 
symbioses (Table 2).   
 

Table 2. Technological interventions that enhance 
microbial symbioses 

Technological 
intervention Target Reference 

Application of 
flavonoids to 
rhizosphere 

Amplification of 
communication between  
microbial symbionts and 

their hosts 

(Sugiyama, 2021) 

Application of 
humic acid to the 
soil  

To facilitate the exchange 
of exo-signals between 

microbial symbionts and 
their hosts 

(Capstaff et al., 
2020; Gryndler et 

al., 2005) 

Application of 
polyamine rich 
material to the soil 

Improvement of host 
reaction to symbiotic 

agents 

(Atici et al., 2005; 
Cheng et al., 

2012) 
Inoculation with 
helper bacteria 
AM fungi 

Support communication 
and interaction between 

hosts and  AM fungi 

(Frey-Klett et al., 
2007) 

Inoculation with 
helper bacteria for 
Frankia 

Enhance tolerance to 
abiotic stress of the 
symbioses partners 

(Ghodhbane-Gtari 
et al., 2021) 

 
These stimulation means could be considered 
as a second plant biostimulant, intended to 
synergize the microbial sea buckthorn 
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biostimulants - Frankia nitrogen-fixing bacteria 
and AM fungi. These could lead to the 
development of next-generation plant 
biostimulants with synergistic biostimulatory 
action (Rouphael & Colla, 2018). Figure 2 

illustrates the concept of such synergist of 
microbial sea buckthorn plant biostimulant, 
leading to enhanced economic and ecological 
benefits from sea buckthorn cultivation. 

 

 
Figure 2. Illustration of the enhancers of the sea buckthorn symbiosis as next-generation plant biostimulants, with 

synergistic biostimulatory action 
 
One integrated technological intervention is the 
application of bioactive composts fortified with 
AM fungi/Frankia bacteria helper. Bioactive 
composts include a large quantity of humic 
acids (Guo et al., 2019). Humic acid support 
communications between microbial symbiont 
and host plant roots (Shah et al., 2018). 
The by-products from sea buckthorn berries 
harvesting, branches and leaves, are a good 
substrate for bioactive and biofortified compost 
production. The high flavonoid content of 
branches and leaves could further support the 
formation of sea buckthorn symbioses (Yang et 
al., 2009). Utilization of the by-products from 
sea buckthorn berries harvesting to produce a 
complex sea buckthorn biostimulant is an 
example of the circular bioeconomy, with 
direct economic benefits and ecological service 
(Xu & Geelen, 2018). 
 
CONCLUSIONS 
 
Sea buckthorn forms actinorhizal nitrogen-
fixing symbioses with bacteria from Frankia 
genera and multifunctional symbioses with AM 
fungi. The sea buckthorn symbiotic microbes 
fulfill the characteristics of microbial plant 
biostimulants. 
The stimulation means of sea buckthorn 
microbial symbionts represent next-generation 

plant biostimulants with synergistic biostimu-
latory action.  
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