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Abstract  
 
Solanum tuberosum is one of the most economically important species for food consumption. Because the species is 
susceptible to various systemic pathogens, in vitro techniques are preferred for storing the germplasm. Synthetic seed 
technology can be a useful tool in plant conservation, as it combines the advantages of vegetative and generative 
propagation. Using this technology, in combination with salicylic acid, a plant growth regulator known to mediate the 
plant response to cold temperatures, this study aims to enhance the tolerance of Solanum tuberosum explants to cold 
temperatures during in vitro storage. Nodal segments and shoot tips obtained from in vitro cultures of Solanum tuberosum 
‘Salad Blue’ were encapsulated in sodium alginate solutions containing different concentrations of salicylic acid (0; 25 
µM, 50 µM, and 75 µM) and stored at 4°C and under dark conditions for 60 days. Synthetic seeds were inoculated on a 
regeneration medium with 0.3 mg/L IAA and different concentrations of BAP (2 mg/L, 3 mg/L, and 4 mg/L). Even though 
the growth regulators in the culture medium did not influence the regeneration capacity of the explants, supplementing 
the alginate matrix with 25 µM salicylic acid increased the storage capacity of the encapsulated explants.  
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INTRODUCTION  
 
Synthetic seeds are a type of artificial seeds that 
are created to emulate the structure of a natural 
seed. They are a type of slow-growth technique 
used for short and medium-term in vitro 
conservation of plant germplasm. The term was 
first introduced in 1977, by Toshio Murashige. 
Initially, it referred to only encapsulated somatic 
embryos (Murashige, 1977), but later, Bapat et 
al. (1987), has expanded the concept to non-
embryogenic tissues. Non-embryogenic tissues 
that can be encapsulated include axillary or 
terminal buds, nodal segments, cell aggregates, 
or any other type of tissue that can develop into 
plants after short and medium periods of storage. 
Non-embryogenic tissues are preferred because 
somatic embryos have an asynchronous 
development and many species are recalcitrant 
to the process of obtaining them. However, they 
possess the ability to simultaneously develop 
shoots and roots, compared to other types of 
tissues (Ara et al., 2000; Micheli & Standardi, 
2016; Magray et al., 2017). The advantages of 
cold storage in micropropagation are that it can 

diminish the cost of maintaining germplasm in 
vitro, as it minimizes manual labor and the 
number of subcultures (West et al., 2006) as well 
as costs associated with medium components, 
electricity, and space.  
The applications of this technology are various, 
and include the multiplication of endangered 
species, elite genotypes, species where seed 
production is difficult or where the seeds are not 
true to type, or even commercially important 
species (Ray & Bhattacharya, 2008; Ghanbarali 
et al., 2016). 
This technology has been successfully applied in 
Solanum tuberosum, by several authors, as it is 
an alternative that is very convenient to the 
conventional propagation of this species 
(Ghanbarali et al., 2016). Conventional 
conservation of potatoes is represented by 
storing tubers, which means they have to be 
grown annually, which is time-consuming 
(Roque-Borda et al., 2021). Germplasm 
conservation using true seeds is not an option, 
since this species is highly heterozygous and it 
produces seeds that are not true to type. 
However, since Solanum tuberosum, is a species 
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that originated in South America, in the 
subtropical biome, its capacity to withstand the 
low temperatures that are used within this 
technology, is limited. There are, nevertheless 
means of increasing the resistance to chilling 
temperatures in several species. 
Cold storage using synthetic seed technology 
allows to storage of potato shoot tips for 180 
days at temperatures of 4°C and 10°C, however, 
storing them at 4°C can successfully increase the 
storage time to 270 days, as the shoot tips will 
progressively turn brown faster at temperatures 
of 10°C, compared to 4°C (Nyende et al., 2003). 
Preculture of Solanum tuberosum ‘Sante’ and 
‘Agria’ explants in MS medium supplemented 
with 10-6 M concentration of 24-epibrassinolide 
before the encapsulation of explants enhances 
the growth of axillary buds (Ghanbarali et al., 
2016). 24-epibrassinolide (EBr) is a type of 
brassinosteroid, a growth regulator that was 
observed to influence a range of growth and 
development processes (Ghanbarali et al., 2016; 
Planas-Riverola et al., 2019) and to increase the 
tolerance to different types of abiotic stress, such 
as salt stress (Alam et al., 2019; Sousa et al., 
2022), pesticide stress (Sharma et al., 2016), 
high and cold temperature stress (Xi et al., 2013; 
Chen et al., 2019; Fang et al., 2019). Direct sowing 
into ex vitro conditions, in soil, is possible using 
encapsulated nodal segments, with a survival 
rate of 57%, if treated with rooting powder 
before planting (Sarkar & Naik, 1998). 
Another growth regulator with an important role 
in mediating the resistance to low temperatures 
is salicylic acid. Salicylic acid (S.A.) is 
renowned not just as a signal molecule 
mediating plant immunity, but also for its role as 
a plant growth regulator (Hayat et al., 2007; 
Rivas-San Vicente & Plasencia, 2011; Li et al., 
2022). It has been demonstrated to have a role in 
mediating the plant response under different 
types of abiotic stress, for instance, salt stress 
(Idrees et al., 2012; Jayakannan et al., 2015) 
cadmium stress (Krantev et al., 2008; Kovács et 
al., 2014), drought stress (Bandurska & Stroi 
ski, 2005; Hayat et al., 2008; Chen et al., 2014), 
cold temperatures stress (Chen et al., 2020; Guo 
et al., 2023) and biotic stress (Emilda et al., 
2020; Li et al., 2022). 
There is numerous research that focuses on the 
influence of salicylic acid on cold temperature 
tolerance in several economically important 

species, for example, Zea mays (Li et al., 2017; 
Zhang et al., 2021), Citrullus lanatus  (Jing-Hua 
et al., 2008), Triticum aestivum (Ignatenko et al., 
2019; Wang et al., 2021), Solanum melongena 
(Chen et al., 2011) and Spinacia oleracea (Shin 
et al., 2018). Temperatures of 8°C are low enough 
to cause an increase in the endogenous levels of 
salicylic acid in Cucumis sativus seedlings 
(Dong et al., 2014). In wheat, the exogenous 
application of 100 µM salicylic acid enhances 
the activity of antioxidant enzymes and the 
accumulation of proline, increasing tolerance to 
cold temperatures (Ignatenko et al., 2019). 
The exogenous treatment of leaves and roots 
with a 0.5 µM salicylic acid solution for one day 
can increase the chilling tolerance in sensitive 
banana seedlings (Kang et al., 2003). 
In fruits, it has been regarded to enhance the 
tolerance to chilling injury of ‘Hayward’ 
kiwifruits by controlling the metabolism of 
hormones and proline and by maintaining the 
structure of the cell (Niu et al., 2024). In 
cucumber, salicylic acid has a critical role in the 
response of seedlings to chilling tolerance. 
(Dong et al., 2014) noted that the treatment of 
cucumber seedlings with inhibitors of salicylic 
acid biosynthesis will reduce the accumulation 
of endogenous S.A. and the plants have less 
tolerance to chilling injury.  
Therefore, taking into account the multiple 
aspects previously reported, the purpose of this 
study is to observe the response of the explants 
of Solanum tuberosum ‘Salad Blue’ to the 
encapsulation technique and to assess the 
influence of salicylic acid on the cold storage 
capacity of the encapsulated explants. 
 
MATERIALS AND METHODS  
 
Preparation of encapsulation solutions and 
culture medium 
For the encapsulation of Solanum tuberosum 
‘Salad Blue’ explants, 4 variants of sodium 
alginate solutions were used, and one variant of 
calcium chloride solution. 
The encapsulation matrix consisted of 3% (w/v) 
sodium alginate and 3% (w/v) D(+) Sucrose, 
prepared with basal MS macro elements, 
microelements, and vitamins, as described by 
(Murashige & Skoog, 1962). Three 
concentrations were employed to observe 
salicylic acid's influence on synthetic seeds' 
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storage capacity: 25; 50 and 75 µM. The 
composition of each variant of sodium alginate 
solution is detailed in Table 1. 
 

Table 1. The composition of the sodium alginate 
solutions used for the encapsulation of explants 

No Code Composition 

1. V0 MS components, 3% sucrose, 3% 
sodium alginate and no salicylic acid 

2. V1 MS components, 3% sucrose, 3% 
sodium alginate, and 25 µM SA 

3. V2 MS components, 3% sucrose, 3% 
sodium alginate, and 50 µM SA 

4. V3 MS components, 3% sucrose, 3% 
sodium alginate, and 75 µM SA 

 
Regarding the hardening solution, only one 
variant of 100 mM CaCl2, prepared in distilled 
water, was used. The regeneration medium for 
Solanum tuberosum ‘Salad Blue’ synthetic 
seeds consisted of basal MS macro elements, 
microelements, and vitamins, as described by 
Murashige and Skoog (1962), with 3% (w/v) 
D(+) Sucrose, 7 g/L Agar, in three variants, with 
three different concentrations of BAP (2; 3 and 
4 mg/L) and 0.3 mg/L IAA, detailed in Table 2.  
 

Table 2. The composition of the culture mediums used 
for the regeneration of synthetic seeds 

No. Code  Composition 

1. X0 MS components, 3% sucrose, 7 g/L agar, 
and no growth regulators 

2. X1 MS components, 3% sucrose, 7 g/L agar 
+ 2 mg/L BAP and 0.3 mg/L IAA 

3. X2 MS components, 3% sucrose, 7 g/L agar 
+ 3 mg/L BAP and 0.3 mg/L IAA 

4. X3 MS components, 3% sucrose, 7 g/L agar 
+ 4 mg/L BAP and 0.3 mg/L IAA 

 
The storage medium for low-temperature 
conservation contained MS salts in quartered 
concentration and 2.5 % (w/v) D (+) sucrose. 
The liquid medium was distributed 
approximately 40 ml in small jars of 100 ml total 
capacity 
The pH of all culture mediums, storage medium, 
and sodium alginate solution was adjusted to 
5.75 and then sterilized in the autoclave at 
121°C and 1.1 bar atmospheric pressure for 20 
minutes. 
 
 Encapsulation of explants  
The biological material used for the experiment 
‘Salad Blue’ shoots (Figure 1) from in vitro 
cultures, maintained in the Plant 

Micropropagation Laboratory of the Research 
Center for Studies of Food Quality and 
Agricultural Products from the University of 
Agronomic Sciences and Veterinary Medicine 
of Bucharest. Before encapsulation, nodal 
segments were grown for 2 months on 
Murashige and Skoog medium (Murashige & 
Skoog, 1962), without any growth regulators. 
 

 
Figure 1. In vitro obtained shoots of Solanum tuberosum 

‘Salad Blue’ used for encapsulation 
 
The in vitro grown shoots were cut into 
approximately 2-3 mm long nodal segments, 
with at least one axillary bud present (Figure 2), 
and placed in the sodium alginate solution. 
 

 
Figure 2. Nodal segments of Solanum tuberosum ‘Salad 

Blue’ prepared for encapsulation 
 
The explants, together with a small quantity of 
the sodium alginate solution, were dipped into 
the calcium chloride solution using a glass 
pipette. The CaCl2 solution containing the 
explants was constantly stirred (on a magnetic 
stirred, at approximately 10 rpm) during the ion 
exchange process, to allow the formation of 
isodiametric capsules. After 13 minutes, the 
encapsulated explants were rinsed three times 
with sterile distilled water to remove any 
remains of the CaCl2 solution. After rinsing, the 
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capsules were dried for a few minutes on sterile 
filter paper (Figure 3) and then placed in small 
jars containing the conservation medium.  
 

 
Figure 3. Encapsulated nodal segments of Solanum 

tuberosum ‘Salad Blue’ 
The storage medium for low-temperature 
conservation contained MS salts in quartered 
concentration and 2.5% (w/v) D (+) sucrose. 

Synthetic seeds were stored in the conservation 
medium, for 60 days, at 4°C, under dark 
conditions. After 60 days, the synthetic seeds 
were inoculated on the regeneration mediums, 
as detailed in Table 3. The synthetic seeds were 
transferred into the growing room, at a 
temperature of 22-25°C, 5023 lx light intensity 
using white, red, and blue light-emitting diodes 
(LEDs) and with a 16 hours light and 8 hours 
darkness photoperiod.  
 
Statistical analysis  
For the statistical analysis, The Real Statistics 
Resource Pack (https://real-statistics.com/) for 
Excel 2019 was used. Because the sample size 
was not equal for all variants, the Kurskal-
Wallis test was used for the analysis of variance 
instead of ANOVA.   

 
Table 3. Regeneration medium for Solanum tuberosum ‘Salad Blue’ synthetic seeds with different concentrations of            

6-benzylaminopurine (BAP) and Indole-3-acetic acid (IAA) 

Medium variant Growth regulators 
concentrations 

Control -           
0 µM S.A. 

(V0) 

Variant 1 -          
25 µM S.A 

(V1)  

Variant 2 -  
50 µM S.A 

(V2) 

Variant 3 -         
75 µM S.A 

(V3) 

X0 
BAP (mg/L) 0 2 3 4 
IAA (mg/L) 0 0.3 0.3 0.3 

X1 
BAP (mg/L) 0 2 3 4 
IAA (mg/L) 0 0.3 0.3 0.3 

X2 
BAP (mg/L) 0 2 3 4 
IAA (mg/L) 0 0.3 0.3 0.3 

X3 
BAP (mg/L) 0 2 3 4 
IAA (mg/L) 0 0.3 0.3 0.3 

 
RESULTS AND DISCUSSIONS  
 
Considering the total number of seeds 
encapsulated in each variant of salicylic acid 
(V0 - 0 µM, V1 - 25 µM, V2 - 50 µM and V3 - 
75 µM), the highest percentage of regeneration 
was observed in variant V1 with 25 µM salicylic 
acid (78.72%), followed by the variant V3 with 
75 µM salicylic acid (58.33%), V0 -            0 µM 
salicylic acid (51.06%) and V2 with            50 
µM salicylic acid (43.75%), as it can be 
observed in Figure 4.  
Generally, the highest regeneration percentages 
of 91.67% were achieved in variant V1X1             
(25 µM on medium with 2 mg/L 1 BAP and  0.3 
mg/L IAA), variant V1X3 (25 µM on medium 
with 4 mg/L and 0.3 mg/L IAA), and variant 

V0X0 (0 µM S.A. and no hormones in the 
regeneration medium), as depicted in Figure 5.  
 

 
Figure 4. Influence of the concentration of salicylic acid 

on the regeneration of synthetic seeds observed two 
weeks after inoculation on medium 
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Figure 5. The regeneration capacity (%) of the synthetic seeds, observed two weeks after inoculation on the 

regeneration medium  
 
Regarding the concentrations of growth 
regulators present in the growing medium, the 
highest percentage of regeneration was recorded 
on X0, the control medium, with no growth 
regulators (81.25%). Adding IAA and different 
concentrations of BAP decreased the speed of 
regeneration from 60.42% in the X1 variant (2 
mg/L BAP + 0.3 mg/L IAA) to 47.92% in 
variant X3 (4 mg/L BAP and            0.3 mg/L 
IAA) and to 47.83% in variant X2 (mg/L BAP 
and 0.3 mg/L IAA), accordingly to Figure 6.  
 

 
Figure 6. Influence of the concentration of growth 
regulators on the regeneration of synthetic seeds, 
observed two weeks after inoculation on medium 

 
It must be noted, that all explants inoculated on 
the mediums with growth regulators were able 
to regenerate shoots, but at a very low speed, 

because during the first month of culture, the 
tissue at the base of the explants started 
dedifferentiate and produce callus cells.  
 
Growth of synthetic seeds  
Average shoot length (mm) 
The highest values regarding the average shoot 
length seeds were recorded in the variants of 
synthetic seeds that were sown on hormone-free 
medium: 56.18 mm (V3X0 - 75 µM S.A.), 54.62 
mm (V1X0 - 25 µM S.A.), 54.44 mm (V2X0 - 
50 µM) and 49.32 mm (V0X0 -           0 µM). 
Overall, the lowest average growth values were 
recorded in the variants that were sown on the 
mediums with the highest concentrations of 
BAP (X): 4 mg/L BAP and 0.3 mg/L IAA 
(Figure 7). Kruskal-Wallis revealed statistical 
differences between the analyzed variants. 
Regarding the overall hormone concentrations 
of the regeneration medium, the Kruskal-Wallis 
test revealed significant differences between the 
four variants, with growth factor declining with 
increasing hormone concentrations, with the 
highest value of 54.31 mm on the hormone-free 
medium (X0) and the lowest value of 22.45 mm 
on the medium with 4 mg/L BAP and 0.3 mg/L 
IAA (Figure 8 A). No statistically significant 
differences were recorded in the variants sown 
on medium with 2 mg/L BAP and 0.3 mg /L IAA 
(X1) and 3 mg/L BAP and 0.3 mg/L IAA (X2). 
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Figure 7. Average length (mm) of the shoots regenerated from the encapsulated explants  

 

 
Figure 8. Influence of the growth regulators in the regeneration medium on the average shoot height (A). Influence of 

the encapsulation matrix on the average shoot height (B) 
 
If analyzed by the concentration of salicylic acid 
in the medium, the Kruskal-Wallis test reveals a 
p-value > 0.05, pointing out no statistically 
significant differences regarding the average 
shoot length.  
The highest average value of 44.15 mm was 
obtained for the explants encapsulated in the 
variant with 50 µM SA, followed by 41.07 mm 
on the variant with 75 µM, 38.62 mm on the 
variant with 25 µM and the lowest value, 34.35 
mm on the control variant. 
 
 
 

CONCLUSIONS  
 
Even though it originates from a subtropical 
biome, Solanum tuberosum is a species that has 
a good potential to be conserved using in vitro 
cold slow-growth techniques and synthetic seed 
technology. Because conventional conservation 
of this species through tubers is time-consuming 
and not economical, and because conservation 
through seeds is not possible, the development 
of other conservation protocols is important. 
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 Encapsulation of explants of Solanum 
tuberosum using synthetic seed technology can 
also ensure that the material that is regenerated 
from them is free of pests and diseases, and, 
compared to other in vitro conservation 
methods, such as cryopreservation, it is less 
expensive and requires less specialized 
equipment.   
Supplementing the alginate matrix with 25 µM 
salicylic acid increases the regeneration capacity 
to 78.72% in synthetic seeds of ‘Salad Blue’. 
Sharifeh et al. (2011), obtained similar results, 
where supplementing the alginate matrix with 
25 µM or 50 µM salicylic acid increases the 
viability of Helianthus annus synthetic seeds, 
after 90 days of storage.  
Regarding the regeneration medium, growth 
regulators are not mandatory for the 
regeneration of ‘Salad Blue’ nodal segments, as 
our study has shown that it decreases the speed 
of regeneration and the height of the shoots, as 
the concentrations of BAP and IAA used in this 
experiment stimulated more the 
dedifferentiation of cells and callus growth, than 
the regenerations of shoots.  
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