
141

  

 
RECENT INSIGHTS IN VACUUM IMPREGNATION APPLICATION  

ON MINIMAL PROCESSED FRUITS AND VEGETABLES 
 

Elisabeta Elena POPA, Mihaela GEICU-CRISTEA, Amalia-Carmen MITELUŢ,  
Mihaela DRAGHICI, Paul Alexandru POPESCU, Ion NIŢU, Roxana Elena ALECU,  

Mona Elena POPA 

 
University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăşti Blvd,  

District 1, 011464, Bucharest, Romania 
 

Corresponding author email: mihaela.geicu@usamv.ro 
 
Abstract 
 
Recently, the consumer demand has increased in respect to minimally processed food, with health-promoting values 
and desirable sensory attributes. Fruit and vegetables are characterised by a multitude of health benefits, including 
their low calorie content, high dietary fibre content, and abundance of nutritional components, such as vitamins and 
minerals. They are considered essential components of a human diet. Vacuum impregnation (VI) combined with drying 
could be an interesting alternative to obtain a wide range of natural functional products. Vacuum impregnation is a 
technique that uses pressure gradients to incorporate functional active components into the structural matrix of porous 
fruits and vegetables without substantially modifying the organoleptic properties. Therefore, the aim of this study is to 
present the mechanism of action and recent application of vacuum impregnation in fruits and vegetables. The results 
show great functional properties of minimally processed fruits and vegetables following the application of vacuum 
impregnation technology. 
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INTRODUCTION 
 
Vacuum impregnation is a valuable method 
which can be used to rapidly introduce different 
ingredients in concentrated solutions into food 
matrices in order to obtain food products with 
improved functional characteristics (Saleena et 
al., 2023; Gautam et al., 2024). This technology 
can also be used to fortify food by the 
impregnation of a solution rich in bioactive 
compounds and specific minerals which can 
enhance the nutritional quality of the product 
(Bernardino et al., 2021; Mierzwa et al., 2022). 
In addition to bioactive compounds, vacuum 
impregnation technique can introduce viable 
microbial cells into food products, like 
probiotic bacteria (Bernadino et al., 2021). 
Impregnation of solutes is a specific process 
used to increase the composition of a certain 
compound or a combination of compounds in a 
food matrix to obtain a functional food product 
(Gonzalez-Perez et al., 2022). Plant tissues 
have a complex internal microstructure 
consisting of cells, intercellular spaces, pores, 
etc. The pores are covered with gas or natural 
liquid; due to their reasonably large size, pores 

allow beneficial microorganisms and 
physiologically active substances such as 
minerals and vitamins to accumulate on the 
surface of plants. It has been demonstrated in 
various studies that impregnation was carried 
out successfully under vacuum and atmospheric 
pressure conditions (Assis et al., 2019; de 
Medeiros et al., 2022; Elvan et al., 2022). 
Vacuum impregnation is a non-thermal and 
non-destructive treatment (Castagnini, J.M., 
2021; Nishad et al., 2022; Vinod et al., 2024) 
that aims at modifying the food matrix through 
partially removing water or air and 
impregnating bioactive compounds without 
affecting the structural integrity of the 
materials. This technique leads to fill in the 
entire volumes of pores in fruit and vegetable 
tissues, therefore modifying sensory attributes 
and physicochemical properties of food 
products (Elvan et al., 2022). 
During the application of vacuum impregnation 
process, the impregnation solution penetrates 
the intracellular spaces of food tissues, 
enhancing mass transfer efficiency. The 
advantages of using this technology to improve 
fruit and vegetables properties are short 
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processing times, relatively low costs and the 
potential to be scaled up at industrial level 
(Durán-Castañeda et al., 2024). 
The objective of this study was to present the 
latest findings on the application of vacuum 
impregnation technology for the 
functionalisation of minimally processed fruit 
and vegetables. 
 
RESULTS AND DISCUSSIONS 
 
It is well known that fresh fruits and vegetables 
represents a great source of essential minerals, 
vitamins, and antioxidants, having a great 
potential in improving human health. 
Traditional technologies and processing 
methods that are used for fruit and vegetable 
conservation affect in a negative way both 
nutritive and sensorial aspects of products 
(Vinod et al., 2024). To overcome these 
problems, in recent years, many different 
technologies were developed in order to 
maintain and improve food quality, one of 
these technologies being vacuum impregnation. 
The vacuum impregnation process is comprised 
of two primary steps, namely (1) reducing 
pressure inside the system (under vacuum), 
removing the liquids and gases present in the 
product and expanding the pores until the 
mechanical equilibrium is achieved through 
pressure gradients; (2) restoring the 
atmospheric pressure, known as the relaxation 
phase, and using the opposite pressure gradient 
to ensure the pores are saturated with the 
external solution as the tissue relaxes, until a 
new equilibrium is reached (Palumbo et al., 
2022). In this context, vacuum impregnation 
can be used to modify organoleptic properties 
of porous foods and improve their sensory 
attributes, texture, physicochemical properties, 
antioxidant properties and enhance their 
bioactive content (Radziejewska-Kubzdela et 
al., 2023; Durán-Castañeda et al., 2024). 
Fruit and vegetables are excellent matrices for 
vacuum impregnation application due to their 
porous texture. A study conducted by 
González-Pérez et al. (2023) aimed to optimize 
β-carotene impregnation from carrot juice or 
fresh product in Pachyrhizus erosus using 
vacuum. The following parameters were used: 
temperature of 40°C and an absolute pressure 
of 51 mmHg. The results showed that 

increasing the concentration of the solution 
resulted in increased concentrations of solute, 
total carotenoids and total soluble solids. 
Mierzwa et al. (2022) used a combination 
between vacuum impregnation and ultrasound 
technology for the improvement of the infusion 
of ascorbic acid in cranberries. The results 
showed increased content in ascorbic acid and 
higher antioxidant activity. 
Nishad et al. (2022) aimed at functionalise ash 
gourd with citrus peel polyphenols by vacuum 
impregnation. The optimised parameters like 
2.21 minutes blanching pre-treatment, 432.31 
mbar vacuum pressure and a duration of 
treatment of 28.18 minutes led to an increase in 
total phenolic content and antioxidant activity 
by approximately 300%. 
A study conducted by Ertek et al. (2023) 
investigated the effects of vacuum 
impregnation using encapsulated phenolic 
extracts (turmeric, cinnamon, pomegranate 
peel) on strawberry fruits. The results showed 
that the best encapsulation agent was T80, 
which exhibited superior stability and yielded a 
functional strawberry snack. 
Duarte-Correa et al. (2020) investigated the 
production of fortified potato chips using 
vitamin E and C and calcium through vacuum 
impregnation. The results showed that the use 
of this technology led to an increased content 
of fortifiers, namely an average retention of 
72% of vitamin E, 53% of vitamin C and 90% 
of calcium by applying microwave vacuum 
drying with a power density of 1.7Wg-1 and an 
absolute pressure of 4.0kPa. 
The effect of convective drying of mango fruit 
impregnated with polyphenols extracted from 
grape residue flour by vacuum impregnation 
was studied by Batista de Medeiros et al. 
(2022). The results of their study showed 
increased drying rate, softer product and higher 
carotenoids retention in samples treated with 
ultrasound-assisted vacuum. Higher phenolic 
compounds were found in samples submitted to 
vacuum impregnation assisted by osmotic 
dehydration and increased ascorbic acid content 
was determined for samples impregnated using 
also osmosonication.  
Vacuum impregnation technology was used by 
Tangjaidee et al. (2025) for the infusion of 
cherries with fermented green coffee bean 
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extract. The results showed enhanced bioactive 
compounds content of the treated samples. 
Nuñez et al. (2025) used vacuum impregnation 
in the development of a snack based on Granny 
Smith apples, enriched with hydrolysed 
collagen. The results showed that using this 

technology made the collagen bioaccessibility 
very high during in vitro digestion. 
Tables 1 and 2 presents information related to 
recent studies regarding vacuum impregnation 
technology applied to fruits and vegetables and 
its effects on the obtained products.  
 

Table 1. Effects of vacuum impregnation technology application on fruits 

 
Table 2. Effects of vacuum impregnation technology application on vegetables 

Fruit Impregnating solution Effect Reference 
Apple Calcium Increased calcium concentration in treated 

samples. 
Assis et al. (2019) 

Calcium lactate and black 
carrot phenolics 

Increased calcium content, total flavonoids, 
total phenolics, total anthocyanins and 
increased antioxidant capacities. 

Yilmaz & Bilek 
(2018) 

L. rhamnosus encapsulated 
within double emulsions 

Higher impregnation was obtained when 
vacuum treatment was applied for 20 min. 
 

Flores-Andrade et 
al. (2017) 

Aqueous extract of Hibiscus 
sabdariffa  calyces  

The samples presented increased content of 
total soluble phenols and improved 
antioxidant and flavonoid activities. 

Anaya-Esparza et 
al. (2024) 

Jujube Calcium chloride (1% w/w, 
CaCl2) and pectin 
methylesterase (PME) 
(15 U/mL) 

Following vacuum impregnation treatment, 
jujube quality was maintained. Compared to 
control samples, the VI treated ones presented 
lower water loss and higher content in soluble 
solids, ascorbic acid and firmness. 

Zhang et al. 
(2019) 

Apricots Solutions of citric acid and 
sucrose 
Plant extracts like rosehip, 
roselle, and rhubarb 

The results showed solid loss and water gain 
in all infused samples by vacuum 
impregnation. the procedure led to positive 
effects on terpenes in treated samples. 

Demir & Alpaslan 
(2024) 

Cranberry Ascorbic acid solution US-assisted vacuum impregnation led to 
higher content in ascorbic acid, reduced 
difference in colour and good antioxidant 
properties. 

Mierzwa et al. 
(2022) 

Avocado Solution of 1% calcium 
lactate + 1% ascorbic acid 
Solution of 1% calcium 
lactate + 1% citric acid 

Both treatments led to the reduction of weight 
and loss of firmness. The polyphenol oxidase 
activity was inhibited and browning was 
delayed. Furthermore, an extension of shelf 
life was observed, compared to control samples. 

Guzmán-
Armenteros et al. 
(2025) 

Lulo fruit Lulo fruit juice Good availability of pores into fruits with 
close maturity index and good impregnation 
capacity of those pores. 

Hinestroza-
Córdoba et al. 
(2021) 

Chokeberry Apple-pear juice Following vacuum impregnation, an 
increased content of bioactive compounds 
was determined. 

Nawirska-
Olszańska et al. 
(2020) 

Vegetable Impregnating solution Effect Reference 
Pepper Lactic acid solution Increased acidification degree and reduction 

of pH.  
Derossi et al. 
(2010) 

Yam bean Polyphenolic extract of 
mango seed 

The results showed higher content of total 
soluble phenols, higher antioxidant activity 
and pH reduction. 

González-Moya et 
al. (2025) 

Celery root Vegetable juice, such as 
celery stalks, kale and onion 

Pre-treating celery root by vacuum 
impregnation led to increasing bioactive 
components in dried samples. 

Kręcisz et al. 
(2023) 

Lentils Micronutrient solution based 
on iron and zinc 

The results showed enhanced water diffusion 
rate and higher migration of nutrients. Also, 
the phytic acid was significantly reduced due 
to vacuum impregnation. 

Sarkhel & Roy 
(2024) 



144

 

 
CONCLUSIONS 
 
Nowadays, there is a growing demand for 
minimally processed foods with enhanced 
specific functional properties. Due to this fact, 
several technologies were developed or 
improved in order to meet consumer demands. 
One of these technologies is vacuum 
impregnation, which is preferred because is 
non-thermal and non-destructive and is suitable 
for fruit and vegetable processing. This paper 
highlighted some of the recent insights on 
vacuum impregnation application on minimally 
processed fruits and vegetables. The studies 
reviewed indicated that products treated with 
this technology exhibited improved 
physicochemical quality and increased 
concentrations of bioactive constituents. 
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